高考
2013年
數(shù)學復習資料:基本不等式
基本不等式及應用是高中階段一個重要的知識點;
其方法靈活,應用廣范。在學習過程中要求學生對公式的條件、形式、結(jié)論等要熟練掌握,才能靈活運用。
一、基本不等式:
1.a,b∈R,a2+b2≥2ab,當且僅當a=b等號成立,
2.a,b∈R+,a+b≥2-,當且僅當a=b等號成立。
二、問題1:設ab﹤0,則:-+-的取值范圍是( )
(A)(-∞ -2 ] (B)(-∞ 2] (C)[-2 +∞) (D)[2 +∞)
解題辨析:
常見錯誤解法:因為-與-的積為定值,其和有最小值,
即-+-≥2所以選擇答案(D)。此解法是錯的,是因為-﹤0
-﹤0并不滿足不等式:a+b≥2-中字母的條件;
正確方法是:因ab﹤0,所以(--)>0,(--)>0
(--)+(--)≥2,即-+-≤-2,正確答案是(A)
問題2:已知x是正實數(shù),求函數(shù)y=x2+-的最小值?
解題辨析:
常見錯誤解法:因x是正實數(shù),y=x2+-≥2-,所以y=x2+-的最小值是2-,當且僅當x2=-,即x=-時,等號成立;
此解法錯誤的原因是x2與-的積
2-并不是定值。
正確結(jié)論:對于兩個正數(shù)a與b,
當和為定值,當且僅當a=b時,其積有最大值;
當積為定值,當且僅當a=b時,其和有最小值。
正確方法是:因x是正實數(shù),y=x2+-=x2+-+-
≥3·■=3,
當且僅當:x2=-等號成立,即x=1時,y=x2+-的最小值是3
問題3:已知x,y都是正實數(shù),且x+4y=1,求:-+-的最小值?
解題辨析:
常見錯誤解法:因為x,y都是正實數(shù)1=x+4y≥2-
即1≥4->0,-+-≥
2->0,兩式相乘得-+-≥8
所以-+-的最小值是8,此解法錯誤的原因是不等式x+4y≥2-取等號的條件是x=4y,而不等式-+-≥2-取等號的條件是x=y,而這兩個條件不可能同時成立,因此-+-≥8中的等號不成立。
正確方法是:x,y都是正實數(shù),且x+4y=1,所以-+-=(-+-)·(x+4y)=1+4+(-+-)≥5+
2-=9,當且僅當-=-等號成立,
即當且僅當x=-,y=-時,-+-取得最小值是9
問題4:已知x,y,m,n∈R,且x2+y2=2,m2+n2=4,求:xm+yn的最大值?
解題辨析:
常見錯誤解法:
xm+yn≤(x2+m2)/2+(y2+n2)/2=(x2+y2+m2+n2)/2=3
即:xm+yn的最大值為3
此解法錯誤的原因是當xm+yn取得最大值3時,x=m,y=n要同時成立,即有x2+y2=m2+n2,而這是不可能的。
正確解法:因為x2+y2=2,m2+n2=4,兩式相乘
8=x2m2+n2y2+x2n2+y2m2≥x2m2+n2y2+2xymn
8≥(xm+ny)2∴|xm+ny|≤2-
即當且僅當xn=ym時,xm+yn取最大值為2-
總之,基本不等式解決問題并不是萬能的。學習過程中,要深刻理解基本不等式的內(nèi)在實質(zhì),搞清其條件、公式、結(jié)論之間的辯證關系是關鍵。特別對于第二個基本不等式,我們常說“一正、二定、三等號”,其意義就在于此。
訓練題
一、填空題:
1.已知x,y都是正實數(shù),且-+-=1,則x+y最小值是_______,
當且僅當x=_______,y=_______,
2.已知:abc均為實數(shù),且a2+b2+c2=1,則ab+bc+ca的最大值是________
最小值是_________。
3.已知:a,b都是正實數(shù),且a+b=1,則(a+-)2+(b+-)2的最小值是__________。
二、選擇題:
1.已知:a,b都是正實數(shù),且a+b=1,則-+-的最大值是( )
(A)-(B)-(C)2-(D)3
2.已知實數(shù)a,b,c滿足:a+b+c=5且a2+b2+c2=11,則實數(shù)c的范圍是( )
(A)R(B)[- 2](C)(- 3)(D)[- 3]
三、解答題:
1.已知矩形的面積與其周長相等,求其面積的最小值?
2.
⑴比較大?。憨S23_____㏒34,㏒56______㏒67
⑵根據(jù)上述結(jié)論作出推廣,試寫出一個有關于自然數(shù)n的不等式,并證明之。
答案:
一、 填空題:
1. x+y最小值是9, 當且僅當 x=6,y=3。
2. ab+bc+ca的最大值是1 , 最小值是--。
3.(a+-)2+(b+-)2的最小值是- , 二、 選擇題:
1.(C), 2.(D)
三、 解答題:
1.16
2.
⑴ ㏒23>㏒34 , ㏒56>㏒67
⑵ ㏒n(n+1)>㏒(n+1)(n+2), 只要證明: ㏒(n+1)n·㏒(n+1)(n+2)﹤1即可。
特別聲明:1.凡本網(wǎng)注明稿件來源為“湖北自考網(wǎng)”的,轉(zhuǎn)載必須注明“稿件來源:湖北自考網(wǎng)(heywebguys.com)”,違者將依法追究責任;
2.部分稿件來源于網(wǎng)絡,如有不實或侵權,請聯(lián)系我們溝通解決。最新官方信息請以湖北省教育考試院及各教育官網(wǎng)為準!