來源:湖北自考網(wǎng)
時間:2012-08-08
高考2013年數(shù)學(xué)復(fù)習(xí)資料:函數(shù)的單調(diào)性解析
知識要點:
1.函數(shù)單調(diào)性的定義:
設(shè)函數(shù)f(x)在定義域的某個區(qū)間D上,若對于任意x1,x2∈D,當(dāng)x1f(x2)),則函數(shù)f(x)在區(qū)間D上為增(減)函數(shù)。
定義的變形:
(1)設(shè)任意x1,x2∈D, ->0←→f(x)在D上是增函數(shù)。
(2)設(shè)任意x1,x2∈D,(x1-x2)·[f(x1)-f(x2)]>0←→f(x)在D上是增函數(shù)。
2.判斷函數(shù)單調(diào)性的常用方法:
(1)證明一個函數(shù)的單調(diào)性的方法:定義法,導(dǎo)數(shù)法;
(2)判斷一個函數(shù)的單調(diào)性的常用方法:定義法,導(dǎo)數(shù)法,圖象法,化歸常見函數(shù)法,運用復(fù)合函數(shù)單調(diào)性規(guī)律。
3.常用復(fù)合函數(shù)單調(diào)性規(guī)律:
(1)若函數(shù)f(x),g(x)在區(qū)間D上均為增(減)函數(shù),則函數(shù)f(x)+g(x)在區(qū)間D上仍為增(減)函數(shù)。
(2)若函數(shù)f(x)在區(qū)間D上為增(減)函數(shù),則函數(shù)-f(x)在區(qū)間D上為減(增)函數(shù)。
(3)復(fù)合函數(shù)f[g(x)]的單調(diào)性的判斷分兩步:Ⅰ考慮函數(shù)f[g(x)]的定義域;
Ⅱ利用內(nèi)層函數(shù)t=g(x)和外層函數(shù)y=f(t)確定函數(shù)f[g(x)]的單調(diào)性,法則是“同增異減”,即內(nèi)外函數(shù)單調(diào)性相同時為增函數(shù),內(nèi)外層函數(shù)單調(diào)性相反時為減函數(shù)。典型例題:
例1:確定下列函數(shù)的單調(diào)區(qū)間:
(1)y=x2-3x+-
解:x∈R
(x--)2-2(x0)
(x+-)2-2(x<0)
由二次函數(shù)圖象可知y在(-∞,--)和(0,-)上為減函數(shù),在(--,0)和(-,+∞)上為減函數(shù)。
說明:利用絕對值的意義,分類去掉絕對值化歸為常見函數(shù)是解題的關(guān)鍵。注意當(dāng)一個函數(shù)在多個區(qū)間上具有相同的單調(diào)性時,這多個區(qū)間之間不能使用“或”以及“∪”。
結(jié)束
特別聲明:1.凡本網(wǎng)注明稿件來源為“湖北自考網(wǎng)”的,轉(zhuǎn)載必須注明“稿件來源:湖北自考網(wǎng)(heywebguys.com)”,違者將依法追究責(zé)任;
2.部分稿件來源于網(wǎng)絡(luò),如有不實或侵權(quán),請聯(lián)系我們溝通解決。最新官方信息請以湖北省教育考試院及各教育官網(wǎng)為準(zhǔn)!
"2013年高考數(shù)學(xué)復(fù)習(xí)資料:函數(shù)的單調(diào)性解析" 相關(guān)文章推薦